
https://compil-lyon.gitlabpages.inria.fr/compil-lyon/ CAP, ENSL, 2019/2020

Final Exam

Compilation and Program Analysis (CAP)

January, 7th, 2020

Duration: 3 Hours

Instructions:

1. We give some typing/operational/code generation rules in a companion sheet.

2. Explain your proofs, semantic, typing and code generation rules!

3. We give indicative timing.

4. Vous avez le droit de répondre en Français.

Solution: In blue, correction remarks and not fully redacted answers.

Page 1 on 12

https://compil-lyon.gitlabpages.inria.fr/compil-lyon/

Exam CAP - 2019-20

Exercise #1 I A grammar attribution (4-5 points)

Solution: Idea of quadtrees Alexis Nasr.

We textually represent a square picture of size N ×N , N being a power of two, and the left/up
coordinate is (0,0). Squares are cut so that each pieces of the cut have a unique color. 3 colors
are available: r, g and b. During the cut process, either a subimage is of unique color, in which
case we don't have to continue; either it is subdivided into 4 subimages. During the process, a tree
can be constructed (leaves are subimages of a unique color, labeled by the color; a node depicts an
image cut into 4, whose children are its subimages, in the order of a Z). An example of the process
is depicted in Figure 1.

Figure 1: A quadtree

A quadtree can be represented as a parenthesis expression, for instance here (r b g ((b b r

g) g r b)). The following grammar can generate such expressions:

S -> Q

Q -> (Q Q Q Q)

Q -> r

Q -> g

Q -> b

For the following questions, you'll have to derive grammar attributes. For each computation, you
have to give a name and a type, and say whether your attribute is synthesized (i.e computed from
children to parents) or inherited, and give a computation by induction on the grammar

Question #1.1
Compute the size of each side of each sub-square (and sub-sub-square, and so on) of the picture.

Page 2 on 12

Exam CAP - 2019-20

Solution:

attribut hérité , avec N qui devient N
2 à chaque fois qu'on splitte.

Question #1.2
Compute the coordinates (x, y) of the left upper corner of each of these sub-squares.

Solution:

attribut hérité, (x, y) devient (x, y) ou (x+N/2) etc, il faut donc propager la taille avec.

Question #1.3
Compute the number of pixels of color r of the picture.

Solution: attribut synthétisé qui vaut la surface (N/2)2 si on dérive r et 0 si on dérive une
autre couleur aux feuilles. Pour la règle de split on ajoute les 4 surfaces héritées.

Exercise #2 I MiniC: 3 address Code generation (4-5 points)

Here is a piece of code in the MiniC language seen in the course:

int x; int y;

while (x > 3) {

x = x - y;

}

Question #2.1
Generate the RISCV 3-address code for this code 1. for the given program according to the
code generation rules. Recursive calls in the code generator, auxiliary temporaries, code,
must be separated and clearly described. 0 pt for code only.

Question #2.2
Generate the code (including register saving) for the function: You may use ellipses, i.e. [...]
for register saving/restoring the same way we did on the slides to avoid writting overly long
repetitive code.

int my_fun(int x, int y){

while (x > 3) {

x = x - y;

}

return x+1;

}

1We recall that the RISCV (our machine in 2019-20) three address code has the same instruction set as the RISCV
regular code except for conditions which use the idiom condJUMP(label,t1,condition,t2) and temporaries/virtual
registers instead of regular registers)

Page 3 on 12

Exam CAP - 2019-20

Question #2.3
Generate the code for the following call:

int toto ;

toto = my_fun(12, 45);

Solution:

Voici le code généré par notre compilo:

python3 ../../../TP2019-20/TP04/MiniC-codegen/Main.py exam19.c --reg-alloc=none

1 ##Automatically generated RISCV code, MIF08 & CAP 2019
##non executable 3−Address instructions version

##prelude
6

.text

.globl my_fun
my_fun:

addi sp, sp, −160
11 sd ra, 0(sp)

sd fp, 8(sp)
addi fp, sp, 160

16 ##Generated Code
sd s1, 16(sp)
sd s2, 24(sp)
sd s3, 32(sp)
sd s4, 40(sp)

21 sd s5, 48(sp)
sd s6, 56(sp)
sd s7, 64(sp)
sd s8, 72(sp)
sd s9, 80(sp)

26 sd s10, 88(sp)
sd s11, 96(sp)
mv temp_0, a0
mv temp_1, a1
(stat (while_stat while ((expr (expr (atom x)) > (expr (atom 3)))) (stat_block

{ (block (stat (assignment x = (expr (expr (atom x)) − (expr (atom y)))) ;)) })))
31 lbl_l_while_begin_0:

li temp_2, 3
li temp_3, 0

Page 4 on 12

Exam CAP - 2019-20

ble temp_0, temp_2, lbl_end_relational_1
li temp_3, 1

36 lbl_end_relational_1:
beq temp_3, zero, lbl_l_while_end_0
(stat (assignment x = (expr (expr (atom x)) − (expr (atom y)))) ;)
sub temp_4, temp_0, temp_1
mv temp_0, temp_4

41 j lbl_l_while_begin_0
lbl_l_while_end_0:

Return at end of function:
li temp_5, 1
add temp_6, temp_0, temp_5

46 mv a0, temp_6
ld s1, 16(sp)
ld s2, 24(sp)
ld s3, 32(sp)
ld s4, 40(sp)

51 ld s5, 48(sp)
ld s6, 56(sp)
ld s7, 64(sp)
ld s8, 72(sp)
ld s9, 80(sp)

56 ld s10, 88(sp)
ld s11, 96(sp)

##postlude
61

ld ra, 0(sp)
ld fp, 8(sp)
addi sp, sp, 160
ret

66 ##Automatically generated RISCV code, MIF08 & CAP 2019
##non executable 3−Address instructions version

##prelude
71

.text

.globl main
main:

addi sp, sp, −160
76 sd ra, 0(sp)

sd fp, 8(sp)
addi fp, sp, 160

Page 5 on 12

Exam CAP - 2019-20

81 ##Generated Code
sd s1, 16(sp)
sd s2, 24(sp)
sd s3, 32(sp)
sd s4, 40(sp)

86 sd s5, 48(sp)
sd s6, 56(sp)
sd s7, 64(sp)
sd s8, 72(sp)
sd s9, 80(sp)

91 sd s10, 88(sp)
sd s11, 96(sp)
(stat (assignment toto = (expr my_fun ((expr_l (expr_l_nonempty (expr (

atom 12)) , (expr_l (expr_l_nonempty (expr (atom 45))))))))) ;)
li temp_1, 12
li temp_2, 45

96 sd t0, 104(sp)
sd t1, 112(sp)
sd t2, 120(sp)
sd t3, 128(sp)
sd t4, 136(sp)

101 sd t5, 144(sp)
sd t6, 152(sp)
mv a0, temp_1
mv a1, temp_2
call my_fun

106 ld t0, 104(sp)
ld t1, 112(sp)
ld t2, 120(sp)
ld t3, 128(sp)
ld t4, 136(sp)

111 ld t5, 144(sp)
ld t6, 152(sp)
mv temp_3, a0
mv temp_0, temp_3
Return at end of function:

116 li temp_4, 0
mv a0, temp_4
ld s1, 16(sp)
ld s2, 24(sp)
ld s3, 32(sp)

121 ld s4, 40(sp)
ld s5, 48(sp)
ld s6, 56(sp)
ld s7, 64(sp)

Page 6 on 12

Exam CAP - 2019-20

ld s8, 72(sp)
126 ld s9, 80(sp)

ld s10, 88(sp)
ld s11, 96(sp)

131 ##postlude

ld ra, 0(sp)
ld fp, 8(sp)
addi sp, sp, 160

136 ret

Exercise #3 I A parallel while with sleep (10-12 points)
In this exercise, we want to extend the while language with threads and a sleep statement that
pauses the execution for some units of time. The state of the program at execution contains thus
additionally to the memory state, a global execution time.

We consider a mini-language with the following statements:

S(Smt) ::= x := e assign
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| newThread[S] new thread
| sleep(c) sleep, i.e. pause for c units of time

In the sequel, let Prog be the following program:

X:=0;

newThread[sleep(1);sleep(2);X:=100;];

newThread[sleep(5);sleep(3);X:=52];

X:=102

Dynamic (small steps) semantics (approx 4 points) In this section we de�ne three dynamic
small steps semantics denoted by ⇒ for our new language. In each case, con�gurations are of the
form: (S1||S2|| . . . Sn, σ, t), where:
• P = S1||S2|| . . . Sn denotes a non ordered set {S1, . . . Sn} of statements.
When P = S1||S2|| . . . Sn, S||P = S||S1||S2|| . . . Sn
• σ is the memory, as usual in Mini-while small step semantics.
• t is a positive natural number.

Intuitively, the elements of the non-ordered set are the statements �to be done in parallel�, σ is the
current value of variables, t is the time that progresses according to sleep instructions.

Page 7 on 12

Exam CAP - 2019-20

All three semantics have common starting con�guration (S, vars 7→ ⊥, 0) where S is the program
to execute. Then, all rules in the small semantics of Mini-while are adapted in the following way:

(S, σ)⇒ (S′, σ′)

(S||P, σ, t)⇒ (S′||P, σ′, t)
(S, σ)⇒ σ′

(S||P, σ, t)⇒ (P, σ′, t)

(Mini-while regular instructions have the same e�ect on memory and do not take time). Finally,
they all share the rule for the newThread construction:

(newThread[S];S′||P, σ, t)⇒ (S||S′||P, σ, t) NewThread

The initial con�guration to evaluate a program Prog is (Prog, ∅, 0). A �nal con�guration is
(σ, t) such that (Prog, ∅, 0)⇒∗ (∅, σ, t). For the sleep semantics, we have three variants with their

own rule(s):

1. NaiveSem: (sleep(c);P ||S1 . . . ||Sn, σ, t)⇒ (P ||S1 . . . ||Sn, σ, t+ c).

2. MaxSleepSem: (sleep(c1);S1||sleep(c2);S2 . . . ||sleep(cn);Sn, σ, t)⇒ (S1 . . . ||Sn, σ, t+maxk{ck}).

3. MinSleepSem(two rules):
(sleep(0);P ||S1 . . . ||Sn, σ, t)⇒ (P ||S1 . . . ||Sn, σ, t)
and (sleep(c1);S1||sleep(c2);S2 . . . ||sleep(cn);Sn, σ, t)⇒ (sleep(c1−c);S1 . . . ||sleep(cn−
c);Sn, σ, t+ c) where c = mink{ck}).

Question #3.1
For each variant, say if we have a shared memory model or not.

For each variant, explain informally the semantics of sleep in 2 lines maximum.

Solution: Easy question: variables are shared, a unique sigma, thus shared memory.

Question #3.2
Show that there exists a unique derivation in MaxSleepSem to a �nal con�guration for the
program: sleep(1)||x:=5;y:=7.

Solution: You have to execute assigments in order to reduce to empty for the second process
before being authorized to evaluate the sleep.

Question #3.3
What are the possible �nal con�gurations reached by Prog according to the semantics NaiveSem.

Write the semantic rules for NaiveSem in order to exhibit an execution that leads to the maxi-
mal �nal value for X in Prog. Like in the course, you can skip premises of the rules when you
apply a small step and only show the di�erent states reached by the program.

Solution: The three possibilities for X are 100, 52 and 102. The �nal time is always 11. The
reduction is with 11 steps, so quite long to write. To be detailed.

Question #3.4
Same question for MaxSleepSem.

Page 8 on 12

Exam CAP - 2019-20

Solution: Two possibilities, both start with:

• X := 0

• newThread

• newThread

• X := 102

• sleep(1) and sleep(5) for a waiting time of 5

• X := 5

• sleep(2) and sleep(3) for a waiting time of 3

Then it is X := 100 and X := 52 in any order, leading to the �nal con�guration where X is
worth 100 or 52, and t is 8. (Number of steps: 9)

Question #3.5
Same for MinSleepSem.

Solution: Only one possibility: 52, with �nal time 8, and 15 reduction steps.

• X := 0

• newThread

• newThread

• X := 102

• sleep(1) and sleep(5) for a waiting time of 1

• sleep(0)

• sleep(2) and sleep(5-1) for a waiting time of 2

• sleep(0)

• X := 100

• sleep(5-1-2) for a waiting time of 2

• sleep(0)

• X := 5

• sleep(3) for a waiting time of 3

• sleep(0)

• X := 52

Page 9 on 12

Exam CAP - 2019-20

Static Semantics (approx 4 points) The object of the next questions is to design a static
semantics that infers the maximal sleep in a program, and to prove a certain notion of correctness.

Informally, we want :
� ` S : Sleep(n) when n is the largest sleep that can be performed by the statement S, potentially
0 if no sleep is performed.�

For example, for S = sleep(3) ; sleep(2), we want to be able to prove ` S : Sleep(3).

More formally, we look for a judgment ` S : Sleep(n) such that

` S : Sleep(n) ∧ (S, σ, t)⇒∗ (sleep(n′);S′||P, σ, t) =⇒ n′ ≤ n "sleep property"

Question #3.6
Design the static semantics that de�nes the judgment described above for all statements of the
program, we give you one simple rule to start with:

` x := e : Sleep(0)

You have to provide the other rules.

Solution:

skip : 0
S1 : n S2 : n

′ m = max(n, n′)

S1;S2 : m

S1 : n S2 : n
′ m = max(n, n′)

if b then S1 else S2 : m

sleep(c) : c
` S : Sleep(n)

` newThread(S) : Sleep(n)

Question #3.7
Use your rules to �nd n such that ` S : Sleep(n)
when S = (x := 3; if x > 1 then sleep(2) else x := 1) and when S = Prog.
Detail enough steps to illustrate the important rules.

Solution: sleep(5) pour prog et sleep(2) pour le if

Question #3.8
The sleep property only reasons on programs (or on initial con�gurations if you prefer) and
not on con�gurations (i.e. not on parallel statements). If one wants to prove correctness of the
static semantics, one would like to have a similar property for a running con�guration, i.e. a
property of the form:

properties on Si ∧ (S1||..||Sn, σ, t)⇒∗ ... =⇒ ...

Complete the property. You do not have to prove it but you should explain in 2 or 3 sentences
how the proof will be organized to show that your statement is the right one.

Page 10 on 12

Exam CAP - 2019-20

Solution:

∀i.Si : sleep(ni) ∧ ∀i.ni ≤ n ∧ (S1||..||Sn, σ, t)⇒∗ (sleep(n′);S||P, σ′, t′) =⇒ n′ ≤ n

A scheduler based on the static semantics (approx 4 points) We now decide that it is not
useful to spawn a new thread for doing a task that does not introduce delays. We thus replace the
new-thread rule by the following two rules:

sched-0

` S : Sleep(0)

(newThread[S];S′||P, σ, t)⇒ (S;S′||P, σ, t)

Sched-1

` S : Sleep(n) n > 0

(newThread[S];S′||P, σ, t)⇒ (S||S′||P, σ, t)

We want to compare this new semantics with the former one in the three cases. We call =⇒s the
SOS semantics using Sched-0 and Sched-1 but not NewThread.

Question #3.9
NaiveSem: Prove that when using the new thread creation rules (Sched-0 and Sched-1) we
obtain a possible reduction of NaiveSem, i.e. if (P, σ, t) =⇒∗s (P ′, σ′, t′) by NaiveSem then
(P, σ, t)⇒∗ (P ′, σ′, t′) by NaiveSem. Prove all useful cases.

Explain why we do not have the converse, i.e. (P, σ, t)⇒∗ (P ′, σ′, t′) by NaiveSem but (P ′, σ′, t′)
cannot be obtained by =⇒s (and NaiveSem).

Question #3.10
MinSleepSem: Explain why the same applies to MinSleepSem, i.e. =⇒s and MinSleepSem pro-
vides only reductions that are possible with ⇒ and MinSleepSem, but bot all of them.

Question #3.11
MaxSleepSem: This simulation of one semantics by another is not possible with MaxSleepSem.
Give an example of a program for which the semantics of (and the �nal state obtained by) =⇒s

and MaxSleepSem cannot be obtained by applying ⇒ and MaxSleepSem. Hint: use sleep(0).

Solution: Counter example:newThread[sleep(0); sleep(0);x := 2]; sleep(1);x := 4 by the
sched semantics, we necessarily obtain (x 7→ 4) at the end and by the MaxSleepSem semantics
we have necessarily (x 7→ 2)

Question #3.12
Modify the static semantics and modify the rules Sched-0 and Sched-1 to allow a direct
scheduling (i.e. no thread creation) in cases that do not raise incompatibilities withMaxSleepSem.
You should notice that the problem is with sleep(0) and should only prevent thread creation
if no sleep statement can possibly exist in the spawned thread. Explain why your new reduc-
tion →S ensures that →S and MaxSleepSem provides reductions that are possible with ⇒ and
MaxSleepSem.

Page 11 on 12

Exam CAP - 2019-20

Solution: The static judgment should infer ` S : Nosleep if no sleep instruction exist and
` S : Sleep(n) if there might be a sleep (n is not necessary here). then scheduling rules are:

Page 12 on 12

